1. Second-order logic without variables

KOSTA DOSEN

In papers published in 1960, 1971 and 1981 Quine has given a formula-
tion of first-order logic without variables. In this formulation propositional
connectives and first-order quantifiers are replaced by predicate functors,
i.e. functors which transform predicates into predicates. Some additional
predicate functors of a combinatorial nature are added to make up for the
loss of variables. These combinatory predicate functors exhibit what com-
binatory role bound variables have in first-order logic. (In addition to
Quine’s papers cited above, a reader interested in Quine’s variable-free for-
mulation of logic should consult Kuhn 1983, which deals with the axiomati-
zation of Quine’s formulation. In Kuhn 1983 it is also possible to find refer-
ences to works with formulations of logic similar to Quine’s.)

The aim of the present paper is to extend Quine’s variable-free formu-
lation to second-order logic. As before, propositional connectives and first-
order quantifiers will be replaced by predicate functors, whereas second-
order quantifiers will be replaced by functors which transform predicate
functors into predicate functors. In addition to Quine’s combinatory predi-
cate functors we shall have combinatory functors which transform predicate
functors into predicate functors. Most of these new combinatory functors
will play a role analogous to the role of the old combinatory predicate
functors. However, some of these new functors will play a completely new
combinatory role, which essentially corresponds to functional composition.
From this we should conclude that the combinatory role of bound variables
in second-order logic is more complex than the combinatory role of bound
variables in first-order logic. Both Quine’s and our variable-free formula-
tion of logic differ from the variable-free formulations of Schénfinkel and
Curry in that they do not assume full-fledged type-free combinators (cf.
Quine 1971).

246 KOSTA DOSEN

Quine has no sympathy with second-order logic, and this might be a
sufficient reason for somebody who is of his mind not to be interested in the
subject of our paper. However, those who think second-order logic is z
legitimate subject would probably like to know what is the combinatorv
role of bound variables in this logic. In this paper we shall not only try tc
exhibit this combinatory role, but we shall also make some remarks which
deal with questions of categorial grammar.

Quine’s variable-free formulation of first-order logic is meant to be &
systematization of the idea, advocated also by Geach (1979; Ajdukiewicz
1967, p. 635, fn. **), that the quantifier prefix 3x and the bound variable x
form a single whole which is a predicate functor reducing the number of
argument places of the predicate to which it is applied, and analogously
with Vx. In the same way, our variable-free formulation of second-order
logic is meant to be a systematization of such an understanding of quan-
tifiers, including both first-order and second-order quantifiers. As the first-
order quantifier prefix 3x and the bound variable x join into a single whole
to produce the quantifier expression Hx...x..., so the second-order quan-
tifier prefix 3P and the bound variable P join into a single whole to pro-
duce the quantifier expression dP...P..., which is again a functor reducing
the number of argument places of the functor to which it is applied. Ot
course, both Quine’s and our formulation of logic are motivated by theoret-
ical considerations and not by practical convenience.

We shall describe in terms of categorial grammar the languages we
need for Quine’s and our formulation of logic. For this description we shall
first use a rigid categorial apparatus: a categorial apparatus is here called
rigid if every primitive expression of our languages is of a single category:
otherwise, it is called flexible. In the last section of this paper we shall finc
that it might be more natural if we introduced some flexibility into our
categorial apparatus. This applies in particular to the language of our vari-
able-free formulation of second-order logic. For example, we have said that
for second-order quantifiers we have functors which transform predicate
functors into predicate functors. Such is clearly the category of the second-
order quantifier expression 3P...P... in the formula 3P(3x(Px)), where it
is applied to dx...x...; on the other hand, P...P... in the formula 3P(Px)
seems to be simply of the category of predicates. We shall argue that a com-
mutative variant of Lambek’s calculus of syntactic categories (see Lambek
1958) enables us to account for this shifting of categories: with it we can
construct a flexible categorial apparatus for our languages. This flexibility.

SECOND-ORDER LOGIC WITHOUT VARIABLES 247

which brings in the commutativity of concatentation for our languages,
need not be desirable for logic, but it might be important when we want to
analyze natural languages with our logical languages. We shall also show
that if we do not want to bring in commutativity, the original Lambek cal-
culus can still give us some flexibility.

In the first section of this paper we present a variant of Quine’s vari-
able-free formulation of first-order logic without identity. In the second sec-
tion we present our variable-free formulation of second-order logic, which
is an extension of the variant of Quine’s formulation presented in the first
section. Finally, in the third section we consider questions of categorial
grammar.

1. Variable-free formulation of first-order logic

In describing the languages we need for our variable-free formulation of
logic we shall use the following simple calculus of syntactic categories,
which we shall call M. The language of M has finitely, or denumerably,
many primitive category terms, the operations on category terms / and o,
and the relation — between category terms. In applying M in the sequel we
assume that the only primitive category terms are s, which stands for the
category of formulae, and n, which stands for the category of terms. If a
and b are category terms, then the category term a/b is understood intui-
tively as denoting the category of a functor which transforms an expression
of the category b concatenated immediately to the right of the functor into
an expression of the category a. The category term acb stands for the cate-
gory of an expression obtained by concatenating an expression of the cate-
gory a and an expression of the category b in that order. The intuitive read-
ing of the formula a — b is “every expression of the category a is also of the
category b”, or more simply “a reduces to b”. Accordingly, we shall some-
times call a — b a reduction principle. We use a 2 b as an abbreviation for
a — b and b — a. Using a,b,c,a’,b’, ... as schematic letters for category
terms, we assume for M the following axiom-schemata and rules:

i) a—a
(ii) (a°b)c 2 as(bec)
(iii) (a/b)eb — a

., a—a b—b'
(iv) BSaD

248 KOSTA DOSEN

a—>b b—c
a—c

)

It is easy to see that the following gives a rough desription of a decision
procedure for M. To verify whether a — a' is provable in M start from a
and apply the following two rules: rearrange parentheses using the
associativity of ¢, and if a, is (b/c)-c replace 4, in the term a c...ca, by b; it is
clear that this way we can reach only a finite number of terms. If @’ is
among these terms, a — a' is provable; otherwise, it is not. It is also easy to
see that if d(a) is the number of occurrences of / and - in a, then for any for-
mula @ — b provable in M we have d(a) = d(b). A reduction principle a —
b is said to be category raising if d(a) < d(b). So, no reduction principle of
M is category raising.

In the sequel, M, or a calculus like M, will be used to describe a lan-
guage in the following way. At the beginning we assign to every primitive
expression of our language a single category term which is not of the form
acb. If the expression e, has the category term a and the expression e, has
the category term b, then the expression e e, has the category term a-b. We
can disregard parentheses in terms obtained by repeated use of -, because o
is associative. An expression e is of the category b if, and only if, for the cat-
egory term a assigned to e we have that a — b is provable in M. For exam-
ple, when b is s, the expression e is a formula. It is clear that a language
based on M will be in Polish notation; i.e. functors in this language will be
written to the left of their arguments. It is not difficult to see that if a is not
of the form a'-a”, then a — b is provable in M if, and only if, a is equal to
b. Since to every primitive expression of our language we assign at the
beginning a single category term which is not of the form a’-a”, it follows
that every primitive expression of a language based on M is of a single cate-
gory. In other words, the categorial apparatus provided by M is rigid.

We shall now present a variant of Quine’s variable-free formulation of
first-order logic without identity (essentially, this variant is based on Quine
1960). For that purpose we introduce the language L' of first-order logic,
which has the following primitive expressions:

(0) individual variables, of the category n; as schemata for individual
variables we use x, V2% ,Y 12K 50 005
primitive predicates, of the categories p,, where p, is an abbrevia-
tion for s/(ne...en) with k = 0 occurrences of n (p stands for s); as
schemata for primitive predicates we use P, P,P,..;

SECOND-ORDER LOGIC WITHOUT VARIABLES 249

(1) the conjunction connective /\ , of the category s/(ss);

the negation connective ~|, of the category s/s;

the existential quantifier prefixes dx, of the category s/s;
(2) the logical predicate functors:

N Of the categoriesp, /(p,p,);

"1, of the categories p,/p, ;

H,, of the categories p,/p, , ;;

the combinatory predicate functors:

Inv, and inv,, of the categories p, /D, .,

Ref,, of the categories p, ,/p, ,-

As schemata for predicates, primitive or obtained by applying predicate
functors, we use F,F,F,,...

The full language L! is obtained by using M. If we omit the expressions
of (2) from L!, we obtain an ordinary first-order language, whereas if we
omit the expressions of (1) and the individual variables, we obtain the lan-
guage of Quine’s variable-free formulation. The first of the resulting lan-
guages will be called “L! without (2)”. Analogously, “L' without (1)” will
denote the language obtained by omitting from L' the expressions of (1).
Note that there is a certain overlap between (1) and (2), viz. A 00 and o
amount to /A and "] respectively.

Next we formulate in L! a system S! which will enable us to achieve a
reduction to Quine’s variable-free formulation. First, let the equivalence
connective <> be defined in the usual way in terms of A and ~|; for easier
reading we shall write <> as an infix, and not as in Polish notation. Then we
assume for S' the following Rule of Replacement of Equivalents:

A< B
C < C[A/B]

where the formula C[A/B] is obtained from the formula C by replacing zero
or more occurrences of the formula A by the formula B. Next, we assume
for S! the axioms given by the following equivalences:

HxA < A, for every formula A in which x does not occur free
(A im X y,y,) < A ((F,(xpe e X D, (ye--5,)))
(1,H)(x,...x) © 7] (F(x,...x,))

E, F)(x,...x,) © Tx(F(x,...x,x))

(Inv F)(x,...x, X)) < Fx,..x,)

250 KOSTA DOSEN

(inv, F)(xpr ey %, o) < Flx,..x,)
(Ref F)(x,---x,) <> Fx,oox 1%)
Then we can prove the followmg lemmata:

1.1. Lemma: For every F of a category p, , there is an F, such that in St
we can prove
XX

Flxpxx;, o Xy))"
Proof: It is easy to check that the required F, is of the form
(Inv,...(Inv, (inv, (Inv,....(Inv, F)..)))).
M D i Y
k+2—(i-1) i-1

Yo F(x..x_x xx ..Xx

1.2. Lemma: For every F there is an F such that in S! we can prove

F(x,..x) < F(,..y,)
where y,,....y, are the variables x
these variables eliminated.
Proof: We have in S!
F(xl...xyxi+2.. XY e X, ,,)

. 4 with repetitions among

o> F(x..xx, . xlxﬁ2 x,,,yy), using Lemma 1.1
< (Ref, F)(x,.. ...x]xl.+2...xk+2y).

This way we eliminate all repetmons and find F,.

1.3. Lemma: For every formula A of L' without (2) there is a formula of
L! without (1) of the form F(x,...x,), where x,,...,x, are all the free
individual variables of A without repetitions, such that in S! we can

prove A <> F(x,...x,).

Proof: By induction on the complexity of A. For the basis we have that if A
is atomic, i.e. of the form P(y,...y,), we need eventually apply Lemma 1.2.
For the induction step we have the following cases.

Suppose A is of the form A (A4,4,), and A, <> F,(y,...y,) and A, <
F/(z,...z,). Then we have in §'

2
Ao A ((F,0,---y (Fy(z,---2,)))
< (A n,m(Fle))(yl-uynZI...Zm)
and we use eventually Lemma 1.2 to eliminate repetitions among
yl,...,yn,zl,...,zm,

SECOND-ORDER LOGIC WITHOUT VARIABLES 251

Suppose A is of the form | A, and A| & F/(y,...y,). Then in St we
have A & (7] F)(,..-y,)-

Suppose, finally, A is of the form HyA and A < F/(y,...y). If
y; € {y,»--»y,}, then in ' we have 4 < Frl(yl...yn)lf y; € {y»--»y,}, then
using eventually Lemma 1.1 we have in §

Ay (F\0y--,)) < By (F01 Y ViV, 0))
< @ DO Vi Y- Y)-
This concludes the proof of the lemma.

1.4. Lemma: For every formula of L' without (1) of the form F(x,..x))
there is a formula A of L' without (2), whose free individual vari-
ables coincide with the individual variables of F(x;,...x,), such that in
S, we can prove F(x,...x,) < A.

Proof: By induction on the complexity of F. For the basis we have that if
F(x,...x,) is P(x,...x,), then A is P(x,...x,). For the induction step we use
the equivalences concerning the expressions of (2) we have assumed for S'.
This proves the lemma.

In fact, the proofs of Lemmata 1.3 and 1.4 are more informative thdn
the statements of these lemmata. Starting from the proof of Lemma 1.3 we
could easily, but rather tediously, devise a procedure yielding for every A a
unique F(x,...x,), and analogously with Lemma 1.4.

As corollaries of Lemmata 1.3 and 1.4 we get the following two
theorems, which we can take as giving the essence of Quine’s variable-free
formulation of first-order logic:

1.1. Theorem: For every formula A of L' without (2), which has no free
individual variables, there is a predicate F of the category s, without
individual variables, free or bound, such that in S' we can prove
A< F.

1.2. Theorem: For every predicate F of the category s, without individual
variables, free or bound, there is a formula A of L' without (2),
which has no free individual variables, such that in Sl we can prove
Fe A,

252

KOSTA DOSEN

2. Variable-free formulation of second-order logic

We shall now present our variable-free formulation of second-order logic.
The language L? of second-order logic we need for this formulation has the
following primitive expressions:

(0)

(1)
@

as for L', save that instead of primitive predicates we now have
predicate variables, for which we wuse the schemata
P,R,V,P,R,V,P,,..;
as for L., save that we also have the second-order existential
quantifier prefixes AP. of the category s/s;
as for L!, save that we also have:
— the combinatory predicate functors:
Id,, of the categories p,/p,;
— the logical functors:
A2 (which is an abbreviation for E{ k.+ we use analogous
al])brewatlons below), of the categorles q/q 410 where g, is an
abbreviation for pk/(pk . pk) i.e. an ‘abbreviation for the
categories of predicate functors (G=0;q,isp,);
— the combmatory functors:
Inv and inv?, of the categorles q +2/q .,» Where g’ (42 1
pk/(pk Py " Piy) for Inv and

pk/(pk2 Py, ° pk3 i+2) for mv]

Ref?, of the categories q]. +1/4;,,» Where g, is
P/ e P 1 Pii)?

Comp of the categones q/(q1 ') where g; is
pk/(pk . apk) q,is pk/pm, and’ q isp /(pk kj);

Compi,]. of the categories g, /(q2 q,°q,), where
' ispkm/(p PP, Py ki) q,is
pk+m/(pk opm), q,is pk/(pk1 °pk,-)’ and g, is

: pm/(pkmo Py).

i+j

As schemata for predicate functors, primitive or obtained by applying some
of the new functors of (2) of L?, we use Q,Ql, Q .

The full language L? is obtained by using the calculus M of Section 1.
The expressions of (0) and (1) of L? constitute an ordinary second-order

SECOND-ORDER LOGIC WITHOUT VARIABLES 253

language, whereas the expressions of (2) of L? constitute the language of
our variable-free formulation of second-order logic.

Next we formulate in L? a system S which will enable us to achieve a
reduction to our variable-free formulation. For $? we assume whatever we
have assumed for S!, plus the axioms given by the following equivalences,
where X is an abbreviation for (x, ... x,):

dPA < A, for every formula A in which P does not occur free

(Id F)X < Fx
((EII?Q)(FI F))}’ < dP((Q(F, .. FP))?E)
((IanQ)(Fz- i+2 F))X < (Q(F, .. j+2))56’
((invl?Q)(FzFlF3 Fj+2))x < (Q(F, ... F)%
(Ref’Q)(F, ... F,)X < (Q(F, ... FF,)X
((Compf(Qle))(F1 F,.))Y<-> (Ql(Qz(F F‘)))Ff
((CompZ(/\k,,,QQ))(F FF . . F)(x..x,,)
< (A Q(F,...F))Q (F,+1 F N X,).

Now, by imitating the proof of Lemma 1.1 we can prove the following
analogue of this lemma:

2.1. Lemma: For every Q of a category 4, there is a Q, such that in s?
we can prove

(Q(FlmFiFm.__FM))}’e(Ql(Fl... F_|F, FF,]+2))3E.

=17 i+1 i+2"
Next, by imitating the proof of Lemma 1.2 we can prove the following
analogue of this lemma:

2.2. Lemma: For every Q there is a O, such that in §? we can prove
(Q(Pl...Pj))Fc’ < (Q,(R,...R)) X
where Rl,...,Ri are the variables Pl,...,Pj with repetitions among
these variables eliminated.

Now we are ready for the proof of the analogue of Lemma 1.3:

2.3. Lemma: For every formula A of L? without (2) there is a formula of
L? without (1) of the form (Q(P1“'P,'))(x1“'xk)’ where
P,... P »X,5---,%, are all the free variables of A without repetitions,
such that i m S2 we can prove A <> (Q(P,.. P))(x X))

254 KOSTA DOSEN

Proof: By induction on the complexity of A. For the basis we have that if A
is atomic, i.e. of the form P(y,...y), applying eventually Lemma 1.2, we
obtain P(y,...y,) <> FX. Now, if F¥ is of the form (Q,...(Q, P)...)X, where
the Q’s are instances of Inv,, inv, or Ref,, we have

(0,(Q,.--(Q,P)..))X < ((Comp}(Q,2))(Q,...(Q,P)..)%
and thus eventually iterating applications of Comp? we obtain FX <> (QP)X.
If FX is of the form PX, then we have Px <> (Id, P)x.
For the induction step we have the following cases.

Suppose A is of the form A (A A,), and A, < (Q,(R,...R))(y,...y)
and A, < (Q,(V,...V))(z,...z,). Then we have in §°

Ao (N, (QR.RND(V,.. VINV,..3,2--2,)
<—>((C0mp (/\,,,,,QQ))(R RV, Vx))(y1 Y, Zye2,,)
and then using eventually Lemma 2.2 to eliminate repetitions among
R,...,R,V,.,V, and Lemma 1.2 to eliminate repetitions among
Yio---sYpZse++»2,,» and applying eventually Compl and Comp as in the basis
of the mductlon we obtain A < (Q(P,.. P))x

Suppose A is of the form "] A and A, < (Q,(P,.. P))x Then in S? we
have A & ((Compzﬁ L))(P,...P))x
Suppose A is of the form HyA, and A, < (Q,(P,.. Pj))(y1 Y,)-

If y, ¢ {y,...y,}, theninS*> we have A <XQ, (P P))(y y)- If
y; € {y;5---»y,}, then using eventually Lemma 1 1to push y, at "the end of

(y YD and’ applying Comp we 0btamA<—->((Comp2(E[n 1QZ))(P P))
(yl l 1y1+1 y)

Suppose, finally, A is of the form HPA and A, < (Q,(P,.. P))x If
P ¢ {P,. P}, thenmSzwehaveA<—>(Q(P P))x IfP e{Pl, P},
then using eventually Lemma 2 1 to push P, at the end of (P,...P), we
obtain A & ((E[Q)P .P))x This concludes the proof of the
lemma.

1 1 l+1
We can also prove the following analogue of Lemma 1.4:

2.4. Lemma: For every formula of L? without (1) of the form FX there is
a formula A of L? without (2), whose free variables coincide with the
variables of Fx, such that in $* we can prove FX <> A.

This is proved, in complete analogy with the proof of Lemma 1.4, by induc-

SECOND-ORDER LOGIC WITHOUT VARIABLES 255

tion on the complexity of F, where complexity is measured by the number
of expressions from (2) which occur in F.

As we have already remarked concerning Lemmata 1.3 and 1.4, it
would be possible to devise a procedure yielding for every A of Lemma 2.3
a unique (Q(Pl...Pj))(x]...xk), and analogously with Lemma 2.4.

As corollaries of Lemmata 2.3 and 2.4 we get the following two
theorems, which we take as giving the essence of our variable-free formula-
tion of second-order logic:

2.1. Theorem: For every formula A of L? without (2), which has no free
variables, there is a formula A’ made only of expressions of (2) of L?,
such that in S? we can prove A < A’'.

2.2. Theorem: For every formula A’ made only of expressions of (2) of L?
there is a formula A of L? without (2), which has no free variables,
such that in S? we can prove A’ < A.

The fact that in (0) of L! there are no individual constants, and in (0)
of L? there are no constant expressions at all, does not diminish the general-
ity of our results. If there were such constant expressions of the categories
nand p, in (0), Lemmata 1.3 and 1.4, and Lemmata 2.3 and 2.4, would give
enough information of what would happen with these constant expressions
in the variable-free formulations.

Our variable-free formulation of second-order logic extends Quine’s
variable-free formulation of first-order logic by first duplicating at a differ-
ent level Quine’s predicate functors, and next adding some completely new
functors. These completely new functors are the combinatory predicate
functors Id, and the combinatory functors Compf and Comp . And among
these it is the last two types of functors which represents the essential addi-
tion. The functors Idk are introduced for more technical reasons, as can be
seen in the basis of the induction in the proof of Lemma 2.3, and also in
Section 3 below. (The functors Id, for k=2 are anyway dispensable, since
they are easily definable in terms of Inv, , orinv, ,.) The functors
Compf and Compzj are just instances of combinatory functors, correspond-
ing to functional composition, of the categories q. /(g °q. °...°q.),

itk e im S om T im
where Compf and Compf. cover the cases when m is 1 and 2.

Functors corresponc'ljing to functional composition would be expected

for variable-free formulations of a first-order or second-order language with

256 KOSTA DOSEN

function symbols. (We shall not enquire here what functors would be
needed for such formulations.) But they may seem rather unexpected in a
variable-free formu!lation of a language without function symbols, like our
second-order language L? without (2). We suppose that their presence in
our variable-free formulation of this second-order language shows in what
way the combinatory role of bound variables in second-order logic is more
complex than the combinatory rolé of bound variables in first-order logic.

3. Remarks on categorial grammar

This section will be organized as follows. After stating what in L! and L?
might induce us to seek a flexible categorial apparatus, we shall argue that
such an apparatus can be provided by a commutative variant of Lambek’s
calculus of syntactic categories. We shall suggest that this flexibility might
be useful when we want to take L' and L? as tools for the analysis of natural
language. We shall also show that though Lambek’s original noncommuta-
tive calculus cannot give us all that its commutative variant can, with it we
can still achieve some flexibility for our languages.

Concerning the categorial apparatus needed to describe L' we make
the following remarks. If we assumed that s/s — p, /p, and that s/(ses) —
Piim! (yeP,), We would have no need for 7], and A, and 7] and A
would suffice. With similar assumptions about category raising we could
dispense with the sequences of predicate functors 4,, Inv,, inv, and Ref,
and introduce only the predicate functors 3 of the category s/p,, Inv and inv
of the category p,/p,, and Ref of the category p /p,.

Analogous, though in general more involved, remarks about categoi
raising could be made for the functors of L?. However, the categorial
apparatus connected with L? invites also remarks which are more specific to
this context. We have said that the functors E[I? are of the categories q]/qj +1°
For example, the functors E[f) would be of the categories q./q,, i.e. p,/(p,/p,)-
We say “the functors 3" in plural, because 3 is just an abbreviation for
EI; x> and then depending on k and k, we get a sequence of functors. So,
Hj in the formulae of L? on the left-hand side is of the categories indicated
on the right-hand side of the following list:

(&;37 X pip,lp,)

EIog‘lo p/y/p,), i-e. s/(sip,)
(Hglnvo) (x,x,) p/(p,/p,)

(HORefO)x Pl/(Pl/Pz)

SECOND-ORDER LOGIC WITHOUT VARIABLES 257

We can either take this situation as it is, or, if we are unhappy about this
proliferation of functors E[(Z), we can require from our categorial apparatus
to reduce the number of categories on the right-hand side above.

Let us consider another question of categorial grammar connected with
our language L2. First, we shall formulate without variables the following
two formulae of L,: P(3x(Px)) and Hx(3P(Px)). For the first formula we
have in $?

AP(Ax(Px)) < E[P(EIOP)
2
<« EIOEIO
whereas for the second we have
Hx(dP(Px)) < EIx(E[P((Ile)x))
PN E[x((E{f]Idl)x)
2
« H (81d).

These translations are not completely symmetric, due to the presence of Id,
in the second translation; and Id, is present because we must take the
functor 'EI(Z) with an argument from a category q,. It seems it would be quite
natural if we could apply the functor 5[(2) directly to x in order to produce the
formula E[‘zyx, as the quantifier expression 3P...P... (i.e. the prefix 3P and
the bound variable P taken as a single whole) seems to be applied in
dP(Px). This means that we would need a functor El(zl which is also of the
category p,. More formally, we could extend our system S, with the equiva-
lence
(F2d,)x <> Tx

and we would have to explain how El(z) which is of a category pk/(pk/pkl) is
also of the category p,.

So it seems that in more than one respect our language L? invites a
flexible categorial apparatus. The cheapest way to achieve this flexibility
would be to keep the calculus M of Section 1 and discard the rule by which
at the beginning we assign only a single category to the primitive expres-
sions. However, in that case we might have difficulties in verifying whether
an expression e is of a certain category b, since e could now have an infinite
number of categories. An alternative, which we shall follow, is to keep the
rule above, and to leave it to the calculus to provide the reduction princi-
ples we need. Of course, our calculus should be decidable if we want to be
able to determine in every case whether an expression e is of a certain cate-
gory b.

258 KOSTA DOSEN

We shall now introduce a variant of Lambek’s calculus of syntactic
categories of Lambek 1958, and we shall argue that this variant enables us
to construct the flexible categorial apparatus we want. (For the remainder
of this paper we assume a certain familiarity with Lambek 1958.) Our vari-
ant of Lambek’s calculus is closely related to a system suggested by van
Benthem (see Buszkowski 1984, which refers to a paper by van Benthem
due to appear in this book). It differs from Lambek’s calculus in assuming
the commutativity of -, and in conflating the two bars / and \ into the single
/ bar. We shall call our variant of Lambek’s calculus C, whereas the original
Lambek calculus will be called L.

The language of C is identical with the language of the calculus M of
Section 1. For C we assume the following axiom-schemata and rules:

(i) a—a
(ii) (aob)ec 2 as(bec)
) a—>b b—c
a—c¢
(vi) acb — bea
... @C—b ... a—> blc
(vii) TS (viii) p——

It is not difficult to show that if in any formula provable in L (see Lam-
bek 1958, p. 163) we replace terms of the form b\a by terms of the form a/b,
we obtain a formula provable in C (note that we use the schematic letters
a,b,c where Lambek uses x,y,z, and that we do not omit - as Lambek does.)
So we can take L as a proper subsystem of C: an alternative way to formu-
late C would be to add to L either the axiom-schema ab — bea, or the
axiom-schema a/b — b\a, or the axiom-schema b\a — a/b. It is quite easy to
show that M is a proper subsystem of both L and C.

A Gentzen formulation Cg of C is obtained when in the Gentzen for-
mulation of L in Lambek 1958 (p. 165) we discard the rules (2') and (3'),
and add a new (structural) rule:

Uab,V—c
Ub,a,V—c'

A proof of the admisibility of Cut in Cg can be easily obtained by adapting
Lambek’s proof (1958, pp. 167-169; it is enough to note that in a proof an
application of Permutation need never precede immediately an application
of Cut). Using Cg it is not difficult to show that C is a conservative exten-
sion of van Benthem’s calculus LBC (see Buszkowski 1984), i.e. that LBC

Permutation

SECOND-ORDER LOGIC WITHOUT VARIABLES 259

gives the fragment of C with - omitted. Again using Cg it is not difficult to
show that C is decidable.

The reason for working with C rather than L is that L would not give
us all the reduction principles we wanted. To stress that, we shall note when
something is provable in L, and hence in both C and L, and when some-
thing is provable only in C. We shall not give complete proofs in C, but
short sketches at best. In making these sketches we shall use the fact that in
both L and C the following rules are derivable (cf. Lambek 1958, p. 164):
(iv) a—a' b—b’

acb — a'°b’

a—a' b—b'
alb' = a'lb

Using these rules it is easy to show that the following rule of replacement is
also derivable in both L and C:

(ix)

(x) Ea_,rp

%
where ¢’ is obtained from the formula ¢ of the language of C by replacing
zero or more occurrences of a by a’.

Let us now try to see what category raising principles C can give us,
and let us first concentrate on L!. At the beginning of this section we said
that it would simplify matters if we had the category raising principle s/s —
p./p,- Now, in L we can prove

(xi) al/b — (alc)/(blc)

which gives the category raising we needed. Next we said that we might
need s/(ses) > p,, /[(p,cp,)- It is easy to see that in C (but not in L) we have
(al(bec))e(bIb")e(clcYob'sc’ — a '
‘rom which we easily obtain
(xii) a/(bec) — (al(b'c"))/((b/b")e(c/c"))
which is exactly what we needed. Other category raising principles we

hinted at are: s/p, = p,/p, . 1> P,/P, =P, ,o/Prs, @04 p\/p, = p, . /P, ,,- NOW,
in L we can prove

(xiii) a/(b - c) = (alc)/b.

Note that this is not exactly the same as a/(bec) 2 (a/b)/c, which is provable
only in C. From (xi) we obtain easily the following two formulae:

260 KOSTA DOSEN

al(b/b") — (alc)/((blb")Ic)
(ala")/(bIb") — ((ala’)/c)/((b/b")Ic)
which with the help of (xiii) and (x) give us
(xiv) a/(b/b') — (alc)/(b/(cb"))
(xv) (a/a’)/(b/b") — (al(cea’))/(b/(ceb"))
taking care in L of the three category raising principles above. So, with the

help of C we could dispense with "], and AN x> and we would have the fol-
lowing assignment of categories in the language L':

q slp,
Inv and inv p,/p,
Ref p,/p,-

With L instead of C we would obtain all that, except the discarding of
A

k,m’
Let us now consider matters of category raising specific to L?. Instead

of the expressions of (2) of L?> we could introduce the expressions on the
left of the following list with the assignment of categories shown on the
right:

Id s/s
2
E{k,+1 2 s/(s/pij)
Invk1 Ky and invi (s/(pk2 ° pkl))/(s/(pk1 °pk2))
2 o
Ref ,+1 (slp kj+1)/(S/(p"j+l p kj+1))
Comp? ., ®JP)(@,lp,) > ?,p,),

where p,/p s either sis, or s/p,, or
p,/p,, orp /p,
Complzc,m,nl’n2 q;/(q2 q; ° q”) where q; is p, +m/
Ppy)> 9 8pk+,,,/(p,,p)> 4,ispJp, >
ané q] %s P, /p
We shall now justify this replacement. For Id as for 7], it is enough to
establish s/s — p, /p,, which is an instance of (xi), and hence obtainable in

L. For E-I2 ,, We note that using (xiv), (vi), (xiii) and (x) in C (but not in L)
we can prove

(xvi) al(b/b") — (alc)/((blc)/b")
which justifies s/(s/pkjﬂ) - pk/(Pk/ij+1)' Next, in order to obtain

SECOND-ORDER LOGIC WITHOUT VARIABLES 261

»/(o,/p k~+1) - q]/qj +1 We apply (xi), (xiii) and (x). Note that this last reduc-
tion is obtainable in L too. For Inv} . ,invi1 ., and Refz.ﬂ we note that
analogously to what we had for (xvi), using (xv), (vi), (xiii) and (x), in C

+but not in L) we can prove i
(xvii) (a/a")/(b/b") — ((alc)la’)/((b/c)/b")

which, by applying (xi), (xiii), (vi) and (x), yields that the categories
of Invil,k2 apd invi &, O the list . above reduce to q;. +2/qj .,» and that
the categories of fleff‘~+1 on the list above reduce to q].H/qj .- Note that
in L we can obtain tHat @/, °p, N@JP, -p,)) reduces to
42 +1 1 j+2 .
wpJ(Pp, °p, N@JPe-p, "°p, }), where P'is p, °.:.°p, . This reduc-
. 42 j+175 . j+1 j+2 1 j
tion covers an 'inv- working at the end of p, o...p, , rather than at the
N . . 2 3 . . . 1.]+t2 2 .
beginning as inv; did. A similar move is not available for Inv*, and it seems
we must use the commutativity of - to achieve some kind of category rais-
ing. On the other hand, we have in L that (p,/p,)(p/(p,. P,))
. 2 j+1 j+1 j+17
reduces to g, I/qj ,, Which covers the case of Ref".
For Comp,zcm .. We note first that in L we can prove
2 178y]

(xviii) as(b/c) — (a°b)/c
which with (ix) gives
(xix) a'/((aeb)/c) — a'l(a=(b/c)).

Now with (xi) we reduce (p,/p,)/((p,/p,) ° (,/p,)) to((p,/p,) (((p,/P,)
(p,/p,))c), where cis p, °"'°p:c~_1’ and then usin’g (xix) and’(x) to “push ¢
under” p_/p, , and applying (xii‘n) and (x), we obtain in L the reduction to
q]/(qloq;.). For Compi'm’n n We proceed analogously, to obtain that in C
(but not in L) the categories of these functors reduce to q,, /(qzoqioqj). (Note
that by using (xii), i.e., s/(s>s) = p,, /(p,°p,), and also (ixﬁ, (xi), (xiii), (vi)
and (x), g, +]/(q2°qioqj) reduces to g, +I/((s/(sos))oq‘.cqj), but not necessarily the
other way round.)

If we are still unhappy with the complexity of the categories assigned to
Comp; . and Comp; . we can replace these functors by Comp; ,, of

the catego’ries (pk/pm)/(p;/;mz). In L we can prove:

®,/p,)(0/p,) = p/(P/P,)P,), by (xiii)
= @/,)P /P,)P,/p,)), by (xi), (xix) and ()
and we proceed analogously to show that the categories of Compi,m reduce
in C to the categories of Compi’m’nl.n . However, if we make this replace-
ment, we need extra equivalences in g'z, of the type:

262 KOSTA DOSEN

((Comp} , Q)PF <> (QF) ¥
to make for cases where Compi’m is “wrongly” applied according to the old
category assignments.

We conclude our consideration of category raising principles for L2
with the following remark. Though with L we can achieve for Id, and
Comp what we have achieved with C, and though L enables us to achleve
some reductlons for 2, Ref?, and a form of i 1nv! we cannot obtain with it
everything we wanted. In particular, if we were content to assume d of the
categories p,/(p,/p,), we could not achieve any economy in the four
categories assigned to E[2 at the beginning of this section, viz. p /(p /p,),
s/(s/p,), p,/(p,/p,) and pll(p /p,). On the other hand, with the assignment
s/(s/pm), it is enough to have just two categories: s/(s/p,) for the first two
cases, and s/(s/p,) for the second two cases.

At the beginning of this section we have also said that for E[g we might
need a principle reducing a category p,/(p,/p,) to the category p,. In this
matter C can again help us. First we note that in C we can prove (s/n)-n —
s, and hence also

(xx) n—>s/(s/n).

(In L we cannot prove exactly that, but we can prove n — (s/n)\s and
n — s/(n\s).) The category raising principle (xx) says roughly that names
are also first-order quantifiers (of course, this does not mean that first-
order quantifiers are also names). This principle could be intuitively jus-
tified as follows. Let us articulate the sentence ‘John cries’ as ‘(Hx = John)
(x cries)’ (instead of (Hx = John) we could as well use (Vx = John), or
(3x € {John}), or (Vx € {John})), and let the name ‘John’ be an abbrevia-
tion for the first-order quantifier expression ‘(3x = John)...x...”. So we can
take it that ‘John’ is applied to the predicate ‘cries’ to produce ‘John cries’.
This intuitive justiﬁcétion of (xx) could be the basis of an intuitive justifica-
tion of

(xxi) s/(s/p,) — p,
which is easily derived from (xx) with the help of (ix). (In L we could obtain
s/((s/n)\s) — s/n or s/(s/(n\s)) — s/n. Note that in C we also have the con-
verse of (xxi), whereas in L we have the converse of the first reduction of
the last sentence.) Now the quantifiers 32 in (EIZId)x and E[Ox can be taken

as a single quantifier 32 of the category s/(s/p).
We can conclude that though L can give a certain flexibility to our

SECOND-ORDER LOGIC WITHOUT VARIABLES 263

categorial apparatus, it is with C that we obtain all the flexibility we called
for. However, this flexibility has a price. In our languages L' and L?, con-
catenation was not commutative. Working on the categorial apparatus of L'
and L? with C transforms these languages into languages in which concate-
nation is commutative. For example, with C not only is Px a well-formed
formula, but also xP. This is a peculiar situation for logical languages, and
we do not wish to suggest that logical languages should be made commuta-
tive in this sense. But there are natural languages which are commutative to
a significant degree (i.e. they have a “free” word order). If L' and L? are
not considered on their own, but as tools for the analysis of such natural
languages, we can perhaps take them as commutative, and thereby flexible.
L' and L? are not considered/on their own’ but astools for,the #nalysis of
such ,‘gaz«fz{bl’ylz%ge/s,d wz’%:/an perhaps take them as cem tat%?%:é
therebydlexible

The languages L' and L? do not seem to be ill suited for this analysis.
Since natural language lacks the full apparatus of bound variables, we
should expect that it has found ways to do the work of the functors of (2) of
L' and L?. Let us take a brief look at what in natural language could corre-
spond to these functors, after they have been revised by C. The connectives
/\ and 7] correspond to ordinary conjunction and negation, and the quan-
tifier expression d corresponds to the quantifiers ‘something’ and ‘some-
body’. The role of Inv and inv may be played by the passive voice, which
can transform P(xy) into P’'(yx) equivalent to P(xy). The role of Ref may
be played by reflexive pronouns: if r is such a pronoun, and if it is substi-
tuted for y in P(xy), the resulting expresion P(xr) is equivalent to P(xx) (cf.
the chapter by Geach £H=3)). It is unrealistic to expect that the role of the
functors of (2) of L2 will be mimicked by such simple devices. Second-order
quantification seems to be present in natural language more semantically
than syntactically. But to the extent that it is present, we might expect to
find in natural language traces of the functors of our variable-free formula-
tion of second-order logic.

ACKNOWLEDGEMENT

I would like to thank Wojciech Buszkowski, Leon Kojen, Johan van Benthem and
Slobodan Vujosevié for their valuable comments and remarks.

264 KOSTA DOSEN

REFERENCES

Ajdukiewicz, K. (1967): “On syntactical coherence.” Review of Metaphysics 20, 635-647
(Part I of K. Ajdukiewicz (1935): “Die syntaktische Konnexitit”, Studia
Philosophica 1, 1-27, translated by P.T. Geach from the Polish text in K.
Ajdukiewicz (1960): Jezyk i poznanie, Warsaw).

Buszkowski, W. (1984): “A note on the Lambek-van Benthem calculus.” Bulletin of the
Section of Logic 13, (1), 31-37.

Geach, P.T. (1970): “A program for syntax.” Synthese 22, 3-17 (reprinted in Harman
and Davidson (Eds.) (1972): Semantics of Natural Language, Dordrecht).

Kuhn, S.T. (1983): “An axiomatization of predicate functor logic.” Notre Dame Journal
of Formal Logic 24, 233-241.

Lambek, J. (1958): “The mathematics of sentence structure.” American Mathematical
Monthly 65, 154-170.

Quine, W.V. (1960): “Variables explained away.” Proceedings of the American Philo-
sophical Society 104, 343-347 (reprinted in W.V. Quine (1966): Selected Logic
Papers, New York)

Quine, W.V. (1971): “Algebraic logic and predicate functors.” In: Rudner and Scheffler
(Eds.), Logic and Art: Essays in Honor of Nelson Goodman. Indianapolis. (re-
printed with emendations in W.V. Quine (1976): The Ways of Paradox and Other
Essays, 2nd edition, Cambridge, MA).

Quine, W.V. (1981): “Predicate functors revisited.” Journal of Symbolic Logic 46, 649-
652.

